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Overview

• The operational semantics of programming 
languages can be given inductively.

• Type checking

• Expression evaluation

• Command execution, including concurrency

• Properties of the semantics are frequently proved 
by induction.

• Running example: an abstract language with WHILE



Language Syntax
typedecl loc -- "an unspecified type of locations"

type_synonym val   = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp  = "state => val"  
type_synonym bexp  = "state => bool"   -- "functions on states"

datatype
  com = SKIP                    
      | Assign loc aexp         ("_ :== _ " 60)
      | Semi   com com          ("_; _"  [60, 60] 10)
      | Cond   bexp com com     ("IF _ THEN _ ELSE _"  60)
      | While  bexp com         ("WHILE _ DO _"  60)
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Arithmetic & boolean expressions 
are functions over the state



A “Big-Step” Semantics



A “Big-Step” Semantics



A “Big-Step” Semantics

�x := a, s� → s[x := a s]



A “Big-Step” Semantics

�x := a, s� → s[x := a s]



A “Big-Step” Semantics

�x := a, s� → s[x := a s]



A “Big-Step” Semantics

�x := a, s� → s[x := a s]



Formalised Language Semantics



Formalised Language Semantics
an inductive predicate 
with special syntax



Formalised Language Semantics
an inductive predicate 
with special syntax

declare as introduction rules 
for auto and blast
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Rule Inversion

• When〈skip, s〉→ s’ we know s = s’

• When〈if b then c0 else c1, s〉→ s’ we know

• b and 〈c0, s〉→ s’, or...

• ¬b and 〈c1, s〉→ s’

• This sort of case analysis is easy in Isabelle.
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Rule Inversion in Isabelle
declared as an elimination 
rule to auto and blast

name of the new lemma

〈skip, s〉→ s’ implies s = s’

the typical format of an 
elimination rule
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Rule Inversion Again

expresses the existence of 
the intermediate state, s’
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 trivial for another reason



Done!



Determinacy

If a command is executed in a given state, and it 
terminates, then this final state is unique.
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Determinacy in Isabelle
allow the other state to vary

trivial by rule inversion
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Proved by Rule Inversion

call blast multiple times 
(here auto is too slow)
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More Semantic Equivalence!

shorthand for a one-line proof

commands built from 
equivalent commands are 

equivalent



And More!!
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A New Introduction Rule

formalised like this

used implicitly like this

declared like this
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Final Remarks on Semantics

• Small-step semantics is treated similarly.

• Variable binding is crucial in larger examples, and 
should be formalised using the nominal package.

• choosing a fresh variable

• renaming bound variables consistently

• Serious proofs will be complex and difficult!


