
Interactive Formal Verification
8: Operational Semantics

Tjark Weber
(Slides: Lawrence C Paulson)

Computer Laboratory
University of Cambridge

Overview

Overview

• The operational semantics of programming
languages can be given inductively.

• Type checking

• Expression evaluation

• Command execution, including concurrency

Overview

• The operational semantics of programming
languages can be given inductively.

• Type checking

• Expression evaluation

• Command execution, including concurrency

• Properties of the semantics are frequently proved
by induction.

Overview

• The operational semantics of programming
languages can be given inductively.

• Type checking

• Expression evaluation

• Command execution, including concurrency

• Properties of the semantics are frequently proved
by induction.

• Running example: an abstract language with WHILE

Language Syntax
typedecl loc -- "an unspecified type of locations"

type_synonym val = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool" -- "functions on states"

datatype
 com = SKIP
 | Assign loc aexp ("_ :== _ " 60)
 | Semi com com ("_; _" [60, 60] 10)
 | Cond bexp com com ("IF _ THEN _ ELSE _" 60)
 | While bexp com ("WHILE _ DO _" 60)

Language Syntax
typedecl loc -- "an unspecified type of locations"

type_synonym val = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool" -- "functions on states"

datatype
 com = SKIP
 | Assign loc aexp ("_ :== _ " 60)
 | Semi com com ("_; _" [60, 60] 10)
 | Cond bexp com com ("IF _ THEN _ ELSE _" 60)
 | While bexp com ("WHILE _ DO _" 60)

Arithmetic & boolean expressions
are functions over the state

A “Big-Step” Semantics

A “Big-Step” Semantics

A “Big-Step” Semantics

�x := a, s� → s[x := a s]

A “Big-Step” Semantics

�x := a, s� → s[x := a s]

A “Big-Step” Semantics

�x := a, s� → s[x := a s]

A “Big-Step” Semantics

�x := a, s� → s[x := a s]

Formalised Language Semantics

Formalised Language Semantics
an inductive predicate
with special syntax

Formalised Language Semantics
an inductive predicate
with special syntax

declare as introduction rules
for auto and blast

Rule Inversion

Rule Inversion

• When〈skip, s〉→ s’ we know s = s’

Rule Inversion

• When〈skip, s〉→ s’ we know s = s’

• When〈if b then c0 else c1, s〉→ s’ we know

• b and 〈c0, s〉→ s’, or...

• ¬b and 〈c1, s〉→ s’

Rule Inversion

• When〈skip, s〉→ s’ we know s = s’

• When〈if b then c0 else c1, s〉→ s’ we know

• b and 〈c0, s〉→ s’, or...

• ¬b and 〈c1, s〉→ s’

• This sort of case analysis is easy in Isabelle.

Rule Inversion in Isabelle

Rule Inversion in Isabelle
name of the new lemma

Rule Inversion in Isabelle
declared as an elimination
rule to auto and blast

name of the new lemma

Rule Inversion in Isabelle
declared as an elimination
rule to auto and blast

name of the new lemma

〈skip, s〉→ s’ implies s = s’

Rule Inversion in Isabelle
declared as an elimination
rule to auto and blast

name of the new lemma

〈skip, s〉→ s’ implies s = s’

the typical format of an
elimination rule

Rule Inversion Again

Rule Inversion Again

expresses the existence of
the intermediate state, s’

A Non-Termination Proof

The inductive version considers
all possible commands

A Non-Termination Proof

This formula is not provable by induction!

The inductive version considers
all possible commands

A Non-Termination Proof

This formula is not provable by induction!

The inductive version considers
all possible commands

A Non-Termination Proof

This formula is not provable by induction!

The inductive version considers
all possible commands

Non-Termination in Isabelle

Non-Termination in Isabelle
7 subgoals, one for each

rule of the definition

Non-Termination in Isabelle
7 subgoals, one for each

rule of the definition
Most are trivial,
by distinctness

Non-Termination in Isabelle
7 subgoals, one for each

rule of the definition
Most are trivial,
by distinctness

 trivial for another reason

Done!

Determinacy

If a command is executed in a given state, and it
terminates, then this final state is unique.

Determinacy in Isabelle

Determinacy in Isabelle
allow the other state to vary

Determinacy in Isabelle
allow the other state to vary

trivial by rule inversion

Proved by Rule Inversion

Proved by Rule Inversion

call blast multiple times
(here auto is too slow)

Semantic Equivalence

Semantic Equivalence
We can even define

the infix syntax

Semantic Equivalence
We can even define

the infix syntax

It is trivially shown
to be an

equivalence relation

Semantic Equivalence
We can even define

the infix syntax

It is trivially shown
to be an

equivalence relation

More Semantic Equivalence!

commands built from
equivalent commands are

equivalent

More Semantic Equivalence!

shorthand for a one-line proof

commands built from
equivalent commands are

equivalent

And More!!

A New Introduction Rule

A New Introduction Rule

formalised like this

A New Introduction Rule

formalised like this
declared like this

A New Introduction Rule

formalised like this

used implicitly like this

declared like this

Final Remarks on Semantics

Final Remarks on Semantics

• Small-step semantics is treated similarly.

Final Remarks on Semantics

• Small-step semantics is treated similarly.

• Variable binding is crucial in larger examples, and
should be formalised using the nominal package.

• choosing a fresh variable

• renaming bound variables consistently

Final Remarks on Semantics

• Small-step semantics is treated similarly.

• Variable binding is crucial in larger examples, and
should be formalised using the nominal package.

• choosing a fresh variable

• renaming bound variables consistently

• Serious proofs will be complex and difficult!

